

End Field Modelling

J. Scott Berg
Brookhaven National Laboratory
15 December 2003
FFAG03, KEK

Why

- Want to examine multiple designs
- Can't re-design magnets each time you make a lattice change
- Need good starting point to judge nonlinearities
 - ◆ Coming from end fields
 - ◆ Chromatic behavior
 - ◆ Dynamic aperture

Tracking Through Magnet Ends

- Compute result to first order in body field strenght
 - ◆ Can be computed independent of end shape
 - Arbitrary order in transverse variables
 - Limit as end length goes to zero
- Hamiltonian $H_p H_q$
 - H_p independent of field
 - H_q linear in field
- Write map in Lie form $e^{:f:}$

$$f(s) = \sum_{k=1}^{s} f_k(s)$$

$$f_1(s) = \int_{-s}^{s} H_q(\bar{s}) d\bar{s}$$

$$f_{n+1}(s) = \int_{-s}^{s} [H_p, f_n(\bar{s})] d\bar{s}$$

Tracking Through Magnet Ends (cont.)

• If $S_L(s)$ is a function going from 0 to 1 in length $L, L \to 0$,

$$\int_{-L/2}^{L/2} ds_1 \int_{-L/2}^{s_1} ds_2 \cdots \int_{-L/2}^{s_{n-1}} ds_n \, \mathcal{S}_L^{(k)}(s_n) = \delta_{kn}$$

- \bullet Thus f_k picks off terms proportional to the kth derivative of the field at the end
- ullet Result is that f_{n+1} has larger transverse order than f_n

End Field Model

- Make some assumption on behavior of field at ends
 - Rate and form of falloff
 - Symmetry
- Types of end symmetry
 - Midplane: form of field in midplane is given: $B_y(x, 0, s)$
 - Multipole: in polar coordinates, B_r and B_ϕ in polar coordinates are of the form $f(r,s)\cos(m\phi)$
 - * Specify coefficient of $r^{m-1}\cos(m\phi)$
- These assumptions give different answers
 - ullet Answers are the same if there is no s dependence
 - Which symmetry to choose depends on magnet construction
 - Could be other symmetries